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Random Walks on Lattices with 
Randomly Distributed Traps 
I. The Average Number of Steps Until Trapping 
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For a random walk on a lattice with a random distribution of traps we derive an 
asymptotic expansion valid for small q for the average number of steps until 
trapping, where q is the probability that a lattice point is a trap. We study the 
case of perfect traps (where the walk comes to an end) and the extension 
obtained by letting the traps be imperfect (i.e., by giving the walker a finite 
probability to remain free when stepping on a trap). Several classes of random 
walks of varying dimensionality are considered and special care is taken to 
show that the expansion derived is exact up to and including the last term 
calculated. The numerical accuracy of the expansion is discussed. 

KEY WORDS: Random walk; number of distinct lattice points visited; 
random trap distribution; perfect and imperfect traps; average number of steps 
until trapping. 

1. iNTRODUCTION 

A random walk on a lattice with randomly distributed trapping points can 
serve as a model for various processes in photosynthetic systems, molecular 
crystals, ionic crystals, and organic solids. It is, for instance, well suited to 
describe the transfer and trapping of excitations in a photosynthetic 
membrane, ~ of charge carriers in an anisotropic molecular crystal in an 
electric field (2) and of electrons in an amorphous material. ~ 

The model is defined as follows. Consider a d-dimensional lattice L of 
which each point can be in either of two different states: with probability q it 
is a trap and with probability 1 - q  it is a nontrapping point. The states of 
different lattice points are independent stochastic variables and are "frozen 
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in." Next, consider a random walk on L, starting at the origin 0 and 
proceeding according to a given probability distribution p : L -4 ~ for single 
steps (p(l)>/O, ~I~L p ( l )=  1). The walk ends when the walker steps on a 
trap. 

Many authors have studied various properties of this random trap 
model ~4-24) Quantities on which interest has centered are: the probability for 
the walker to survive a given number of steps, the average number of steps 
made until trapping and the probability of return to the origin. In general 
these quantities depend on L, q and p. In this paper we shall be mainly 
concerned with the second quantity. 

The random trap model is obviously akin to other models with a 
random structure, such as the percolation model and the random Ising 
model. In this respect it is a member of a class of models that have received 
much interest in recent years and that by their simple description but 
complicated nature have become a challenge to the theoretician. So far, only 
few rigorous results have been obtained for the random trap model (21'23) (see 
also Ref. 25), except in one dimension. ~4'5'7'~~176 On the other hand, several 
approximative methods have been developed. With a few exceptions, the 
results obtained are valid for values of q that are either small or close to 
unity. 

Rosenstock, who introduced the model in general terms in 1961, (4~ was 
the first to find an expression, valid for q-4 0, for the average number of 
steps until trapping (n) for simple random walks, t14) He introduced a simple 
expression for the probability f ,  that the walker is not trapped after n steps 
and calculated (n) to leading order in q, using an approach that has become 
known as the Rosenstock approximation. Weiss (~5) investigated f ,  more 
closely for a class of random walks in d = 3 and showed that the Rosenstock 
approximation is useful only if q ~ 0.05. Zumofen and Blumen ~lv'lS) went on 
to find better estimates off , ,  for random walks in d =  2 and 3. They also 
investigated the effect of long-range steps and did Monte Carlo simulations 
to test their results. 

The authors mentioned all make use of some of the results obtained by 
Montroll and Weiss (5~ and by Jain et al. (26-31~ for the probability distribution 
of the number of distinct lattice points visited in an n-step walk on the lattice 
without traps. Although the approach followed is essentially correct it is not 
exact, nor is it complete. 

The aim of this paper is twofold. First, in Section 2 we derive an 
asymptotic expansion for (n) valid for small q, thus extending Rosenstock's 
analysis. We consider several classes of random walks of varying dimen- 
sionality. We investigate the error that is involved in neglecting certain 
cumulants and take special care to show that the expansion derived is exact 
up to and including the last term calculated. Second, in Section 3 we extend 
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the results to imperfect traps, i.e., to traps where the walker has a finite 
probability to remain untrapped. We also briefly discuss the extension to 
several types of imperfect traps, each with a different trapping parameter. 
Models with two types of imperfect traps are of interest in photosynthesis.~32) 

Throughout the paper we assume, unless stated otherwise, that the 
random walk is aperiodic (in the sense of Spitzer, Ref. 33, p. 20) and that 
F > 0, where F is the probability of return to the origin in the absence of 
traps. Aperiodicity means that there is no proper sublattice of L to which the 
walk is confined. In terms of the structure function of the random walk 
defined by/3(0) := Y~l~Le~t'~ O C R a, aperiodicity is equivalent to the 
property that/3(0) = 1 iff t? = 0 (rood 21r) (Ref. 33, p. 67). If the random walk 
is not aperiodic then there is a smallest sublattice L'  of L (with dimension 
d'  ~< d) to which the walk is confined. Since the distribution of traps in L '  is 
obviously random and the random walk is aperiodic on L'  the restriction 
imposed involves no loss of generality. The case F = 0 is trivial: one easily 
sees that then, e.g., for perfect traps fn = (1 - q ) n + l  and (n) = (1 - q ) / q .  We 
further assume that L is d-dimensional hypercubic (L = Za). This restriction 
is not serious either, as any random walk on a different type of (Bravais) 
lattice can be easily translated into a random walk on Z a. 

An important classification of random walks is that into recurrent and 
transient random walks. In the former case G(0; 1 ) = o o  and F =  
1 -G- l (0 ;  1 ) =  1, ~34) in the latter G(0; 1) < oo and F < 1, where G(0; z) is 
the Green's function of the random walk at the origin. All random walks 
with d />3  or with ~t~Lil lp( l)<oo and ~t~Llp(l)4:0 are transient 
(Ref. 33, pp. 33 and 83). An interesting subclass of transient random walks 
is that of strongly transient random walks for which G'(0;  1) < ~ .  This 
concept, which was first introduced by Port into the theory of Markov 
chains, (35) plays an important role in the work of Jain eta/ .  (26-31) All 
random walks with d>/5  or with Y~mL ]llZP(l) < oo and Y~t~L lp(I)4:0 are 
strongly transient. (29) 

Our results for (n) depend strongly on d and on the detailed properties 
of p. In the asymptotic expansions obtained coefficients occur that are 
related to the asymptotic behavior of G(0; z) for z ~ 1 (and in a few cases 
also to the value of G(l; 1) for 14: 0). For most classes of random walks this 
behavior is known from standard random-walk literature, for others we have 
extended known results. 

A matter of particular convenience in the description of the random 
trap model is that some of its properties are easily expressed in terms of 
properties of the random walk in the absence of traps. This is an important 
simplification. 
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2. PERFECT TRAPS 

Consider an infinite d-dimensional hypercubic lattice L with a random 
distribution of traps, and an arbitrary random walk p on L. If q is the 
probability that a lattice point is a trap, then the probability f~ that the 
walker has not been trapped after n steps is given by O6) 

f ~ = ( ( 1 - - q ) S " ) ,  n>~O (2.1) 

where S,  is the number of distinct lattice points visited by the walker and the 
average is over all walks of n steps on the lattice without traps. We assume 
q > 0. Clearly, f ,  is a monotone, nonincreasing function of n. In Ref. 21 it is 
shown that S,  ~ m with probability 1 as n -* m, and hence f ,  ~ 0, for all 
random walks except the degenerate random walk with p ( 0 ) =  1. The 
average number of steps (n) before trapping is found from 

(30 

( n ) =  ~. n ( L _  1 - , f , ) =  @ f~ (2.2) 
n = l  n = 0  

(cf. Ref. 37, p. 213). The higher moments of n are expressed as similar sums. 
In order to calculate (n) from Eqs. (2.1) and (2.2) one has to know the 

probability distribution of S,  for all lengths n of the walk. For general 
random walks this probability distribution is not known exactly, the 
difficulty lying in the fact that whether or not a step leads to a new lattice 
point generally depends on all previous steps. The average (Sn), however, 
can be found from the simple equation (5) 

where 

z"(S,)  = 1/(1 - z) 2 G(0; z) (2.3) 
n = 0  

1 zg f~ e-il'O 
dO~... -~dO~ 1 - z / 3 ( 0 ) '  I C L ,  I z l < l  (2.4) 

is the Green's function of the random walk and/3(0) := Y~I~L e"" ~ 
For large n the probability distribution of Sn exhibits a number of 

simple limiting properties. First of all, as mentioned before, for all 
nondegenerate random walks S ~  oo with probability 1 as n ~  0o. The 
asymptotic behavior for large n of (Sn) can be extracted from Eq. (2.3). 
Furthermore, for simple random walks with d/> 2 Dvoretsky and Erd6s (38) 
proved that the stochastic variables S ,  satisfy the so-called weak law of large 
number s: 

lim P[[S, -- (S,)I/(Sn) > e] = 0, for ~ > 0 (2.5) 
n ~ e o  
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(where P stands for probability). They achieved this by showing that 

Var S n / ( a n )  2 ---+ O, n -+ oo (2.6) 

(Var S~ := (S2n) - ( a n )  2) and using the Chebyshev inequality. They further 
improved Eq. (2.5) by proving that S J ( S , )  --+ 1, n -+ oo, with probability 1 
(the strong law). Subsequently these results were generalized to arbitrary 
transient random walks by Spitzer, Kesten, and Whitman (see Ref. 33, p. 38) 
and to recurrent random walks in d = 2 by Jain and Pruitt. {29) For recurrent 
random walks in d =  1 the asymptotic behavior is in general more 
complicated ~29) and Eqs. (2.5) and (2.6) do not hold. 

Jain et aI. (26-31) have made a careful study of some further asymptotic 
properties of the probability distribution of S , .  For example, they have 
shown that for random walks with d >/3 and for strongly transient random 
walks in d =  1 and 2, (Sn-(Sn))/Varl/2Sn converges  to the normal 
distribution with mean 0 and variance 1 (the central limit theorem) if F > 0. 
For a large class of random walks they have calculated Var S, to leading 
order in n and in addition obtained a bound for ((S, - (S,))4). 

We shall use the various asymptotic results obtained for the probability 
distribution of S,  to derive an asymptotic expansion for (n) valid for small 
q. To this end we first apply the Euler-Maclaurin summation formula to 
Eq. (2.2): 

f0 c~ 1 (n)  = dn f ( n )  + -~(fo + f ~ )  + R (2.7) 

where f ( n )  is a suitably chosen function on [0, oo), to be specified later, 
which is equal to fn for integer n and has two continuous derivatives, foo := 
limn-.o~ fn and R is a rest term. To estimate the order of R we observe thatfn 
is positive, monotone and, by Eq. (2.4b) in Ref. 21, convex. Hence it is 
possible to choose f ( n )  also positive, monotone, and convex. It then 
follows (39) that R is of order f ' ( o o ) - - f ' ( 0 ) ,  where obviously f ' ( o o ) : =  
limn_.~o f ' ( n  ) = 0. Since f l - f 0  = O(q) it is also possible to choose f ( n )  so 
that f ' ( 0 ) =  O(q), which then ensures that R =O(q).  We further have 
f0 = 1 --q andfo o = 0 (for nondegenerate random walks). 

Next, to evaluate the integral in Eq. (2.7), we introduce the variable 
2 := - log(1  - q )  and make the cumulant expansion 

f~ = (e-aS") = e xn (2.8a) 

_ ( - z ) ;  . .  
x. := ~ ,  J! ^. ;  (2.8b) 

822/37/3-4-5 
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where Knl := (S,) ,  Kn2 : =  Var S,  and Knj(j~ 3) is t h e j t h  cumulant of S , .  
Writing f(n)=:exp[--x(n)], where x(n)=x,  for integer n, changing the 
integration variable in Eq. (2.7) from n to x and noting that x(n) is 
monotone, we get 

; ;  x dn 1 In) dxe-  ~x +-~-+ O(q) (2.9) 

In order to find dn/dx we construct a systematic expansion in terms of 
2 (for a given finite x) for the inverse function n(x) of x(n), valid for small it, 
by substituting into Eq. (2.8b) the asymptotic expressions for the cumulants 
of S , ,  valid for large n, and considering n as a continuous variable. 
Substitution of this expansion into Eq. (2.9) yields an expansion for in) in 
terms of it, the coefficients of which are standard-type integrals. If 
Y~n f~ < oo for all/!+ > 0, the coefficients in this expansion are finite. Finally, 
by expanding it in powers of q we find the desired expansion for in). 

Observe that we choose for f(n) the function that is obtained from 
Eq. (2.8b) by simply considering n as a continuous variable in the 
asymptotic expressions for the cumulants. It is not clear that in this way a 
function is obtained which has the properties required in Eq. (2.7). However, 
this presents no practical problem. Indeed, as an alternative fo r f (n )  we may 
choose the function ( 1 - - A ) f l ,  l +Aft, l+ 1 with A : = n - [ n ] .  This function 
does satisfy Eq. (2.7) with R = 0 and, what is more important, it turns out 
that in each of the cases to be considered in the sequel this function is iden- 
tical with f(n) up to and including the order in it and n for which we shall 
use the cumulant expansion. Therefore f ( n )  gives us the correct result. 

In the following we shall derive the asymptotic expansion for in) up to 
and including the term of lowest order in q to which the second cumulant 
Var S,  contributes. If Eq. (2.6) holds this term is certainly not the leading 
term in q. Since only the leading term in n for Var S ,  is known thus far we 
shall have to neglect all subsequent terms in the expansion of in). For (Sn), 
on the other hand, we can obtain as many terms in the expansion for large n 
as are required to carry out the derivation to the order indicated. This is 
accomplished by expanding G(0;z)  in terms of 1 - z ,  using Eq. (2.3) and 
applying a theorem due to Darboux ~+~ (ef. Ref. 42, p. 140). In the 
following we shall need only those terms in the expansion of (S , )  to which 
the singularity of G(0;z)  at z =  1 contributes. Furthermore, since the 
asymptotic behavior for large n of the cumulants K,j  withj  >/3 is not known 
we shall also have to neglect contributions arising from these cumulants. 
However, it can be rigorously shown that if 

( (S,  -- (S , ) )  j) 
~ 0 ,  n ~ o o ,  forall  j > / 3  (2.10) 

~Sn) J-2 Var S,  
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such contributions are of higher order in q than the terms derived. In that 
case the expansion of (n) thus obtained is exact up to and including the last 
term calculated. 

We mention here that Jain and Pruit (31) have proved that for all random 
walks with d >/3 and for a large class of strongly transient random walks in 
d =  1 and 2 (possibly all, but certainly those for which G"(O; 1) < oo; see 
Ref. 3 1, p. 117) ((S n - (S~)) 4) = O(Var 2 S,). Note that this does not follow 
from the central limit theorem. Together with Eq. (2.6) this establishes 
Eq. (2.10) for j = 4 .  It then follows from the Schwarz inequality that 
Eq.(2.10) holds also for j = 3 ,  and from l ~ S , ~ n + l  and (S , )~ -  
(1 - F ) n  ~ n (34) that it holds f o r j  > 4 likewise. 

In the following we shall first consider the class of unbiased random 
walks with finite single-step variance, i.e., random walks for which /a := 
ZI~L lp(1) = 0 and m2 := Y~t~L tl]:P(l) < m (finite mean-squared 
displacement per step). This includes, e.g., all random walks with p(1)= 
p(- l )  and with p(1)> 0 on a finite subset of L. For this class /3(0)= 
1 - �89 Y~i,j CijOiOj AV O(10[2) ' 0---~ 0, with Cij := Z/~L lilip(1), i , j =  1 ..... d. The 
constants Cij are finite, the matrix {C/j} is positive definite (Ref. 33, p. 74) 
and we define C 2 := det{Cij}. Random walks in this class are recurrent for 
d = 1 and 2, transient for d = 3 and 4 and strongly transient for d )  5. The 
case d = 1 will have to be treated in a special way since neither Eq. (2.6) nor 
Eq. (2.10) holds in this case, so that the procedure sketched above cannot be 
followed. Furthermore, for d - - 2 ,  3, and 4 we shall have to distinguish 
between the two subclasses with m 3 :=  ZIEL 1l]3p(l) < oO and with m 3 = oo. 

Subsequently we shall discuss other classes of random walks. 

(i} d = 1. For this special case we start from the exact result for the 
simple random walk 

(n) = (1 - q)/q2 (2.11) 

derived by Montroll (7) (apart from the factor 1 - -q ,  which is due to the fact 
that we allow the origin to be a trap). Equation (2.11) is one of the few exact 
results known thus far for (n). Crucial in the derivation of this result is the 
argument that the simple random walk starting in an interval between two 
traps is confined to this interval. If  steps of two or more lattice spacings are 
allowed this argument is no longer valid and no exact result is known. We 
can, however, in this case determine the behavior of (n) for q -o 0 as follows. 
Jain and Pruitt ~29) have proved that the probability distribution of S , / ( S , )  
converges for n ~ m to a limit distribution of which we merely note that it is 
independent of the random walk. They have also proved that (sk,)/(S,) k, 
k >~ 2, converges to the kth moment of this limit distribution. Using this 
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result, together with the fact that (S , )  -~ C(8n/~)1/2, (34) we readily find from 
Eqs. (2.1) and (2.2) that to leading order in q, (n) is a function of the 
product Cq. A comparison with Eq. (2.11) then yields 

(n') ~-- 1/CEq 2 (2.12) 

(ii) d = 2.  First we assume m 3 < o0. Then it is easily shown that for 
z--*l 

G ( O ; z ) = - u l l o g ( 1 - z ) + u l u 2 + o ( ( 1  - z )  1/2) (2.13) 

where u 1 = 1/2nC and u 2 is a constant that depends on further details o f p  
and can take any value in ( -oo ,  m)  depending on p. For a few random 
walks u z has been calculated exactly(34'43); e.g., for the simple random walk 
u 2 = log 8. From Eqs. (2.3) and (2.13) it follows, as Henyey and Seshadri (43) 
have shown, that 

n ~ c k - -  + o(n 1/2/log2 n) (2.14) 
( S , ) -  Ul log un k=o log k un 

with ck := (--d/dx)kF-l(X)lx=2 (F is the gamma function) and log u := u 2. 
We shall need only the following terms: 

c] 6'2 ) 
n 1 + l o - - ~  + ~ +O(n/log4n) (2.15) 

(S , )  - ul log un 

with 6.1 - - - -  1 - 7 and c 2 = (1 - y)z + 1 - ~zc 2 (y is Euler's constant). 
Jain and Pruitt ~29) have proved that Var Sn ~-8:'r2K*C2n2/logan with 

K * : = K + I ( 1 - - - ~ z c  2) and K : = - - f l d x ( 1 - - x + x 2 )  -11ogx=1 .171953  .... 
Using this together with Eq. (2.15) and following the procedure sketched 
earlier, we find after some algebra for (n) the expansion 

ul [ ( ~ - )  (~-~-) l~176 ) ( n ) = q  log + log log + 

] + l~ + ... + ... (2.16) 

where the brackets are understood to contain only so-called slowly varying 
functions of q. 

Thus far there are no results known for this case that establish 
Eq. (2.10) and thereby ensure that the higher cumulants of Sn, i.e., the Knj 
with j > / 3  in Eq. (2.8b), cannot contribute to the order of the terms in 
Eq. (2.16). However, since Eq. (2.6) holds it is surely sufficient that 
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((S,  - (S , ) )  j)  = O((S , )  J-3 Var 3/2 S , )  for j >/3. As this relation holds for 
all random walks with / z = 0  and m 2 < m  both for d = l  and for d>/3 ,  
which are strongly differing cases, it is not unreasonable to expect that it 
also holds for d = 2. This, however, needs further investigation. 

It is interesting to note that in the calculation of (n) the constants c t 
and c 2 cancel and that only the constant K appears in the expansion. 
Moreover, the final result seems to suggest that for all random walks in this 
class the (slowly varying) function between the square brackets in Eq. (2.16) 
depends on q and p only through the combination log(ulu/q). The product 
UlU can take any value in (0, oo) depending on p. Equation (2.16) makes 
sense only if q < u~u; however, for most random walks ulu is not a small 
number. For example, if C i j=  Cc~ij it follows from Eq. (2.4) and the 
inequality 1 -- Re/~(0) ~< �89 ~i,j CijO~Oj that u~u > ~z/4. 

If  m 3=  m the expansion of (n> may differ from that given in 
Eq.(2.16), though not to leading order in q. In this case the term 
o((1 - z )  1/2) in Eq. (2.13) is to be replaced by one of lower order in 1 - z ,  
which in turn affects Eq. (2.14). If, however, f i ( 0 ) - l + � 8 9  
o(10P2/log 2 ]~l), 0 - ,  0, it follows that this term is o(1/log(1 - z ) )  and hence 
that the first three terms in Eq. (2.15) are unaffected and so is Eq. (2.16). 

{iii) d = 3. For z ~ 1 we have, if m 3 < cx~, 

G(O;z)=Uo-Ul(l-z)l/Z +o((1-z)log(1-z)) (2.17) 

where u 0 = G(0; 1) = I/(1 - F )  < ov and u~ = 1/21/27rC (see also Refs. 5 and 
34). For a few random walks u 0 has been calculated exactly(34'44-48); e.g., for 
the simple random walk u o = 1.516386 .... Insertion of Eq. (2.17) into (2.3) 
leads to 

(S,) = uoLn + 27r-l/Zuluozl'l 1/2 q- o(log n) (2.18) 

For this case Jain and Pruitt (28) have found that VarS~ 
{(1 -F)4/2zc2CZ}n log n. Using this together with Eq. (2.18) we find 

(-~)1/2 1U~uoZlog(-~) +... (2.19) (n)=~ -ulu~ + T  

Since ( ( S , -  (S , ) )  4) = O(Var 2 S,),  (zS) Eq. (2.10) holds and the terms 
occurring in Eq. (2.19)represent the correct expansion. 

If m 3 = ~ this may affect Eq. (2.19), but only after the second term as 
a closer analysis shows. 

(iv) d = 4 a n d  d>15.  F o rz - - ,  1 we have 

G(0; z) = uo+ul(1 --z)  log(1 - -z)+u2(1  - - z )+o( (1  --z)3/2), d =  4 (2.20a) 

G(0; z) = u 0 -- u2(1 -- z) + O((1 -- z)3/2), d >/5 (2.20b) 
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where u 0 = G(0; 1 )=  1 / ( 1 - F )  < oo as before, but u 1 = 1/47r2C; u 2 is for 
d = 4  a constant that depends on further details of p, whereas u2= 
G'(0; 1)< oo for d>/5 .  For d = 4 ,  but not for d~>5, we have assumed 
m 3 ~ .  

From Eqs. (2.3) and (2.20a,b) we deduce 

(S,) = Uoln + Ul Uo 2 log n+ {uo~ + (yul-u2)Uo2} +o(1/n~/2), d =  4 (2.21a) 

(S.)=uo~n + {uo~ + UzUo 2} + 0(1/n~/2), d>~5 (2.21b) 

In Refs. 26 and 28 it is proved that both for d = 4 and for d >/5 Var S.  ~- 
{F(1-F)+2a}n with 0 < a < m .  From a closer inspection of the 
derivation of this result it readily appears that 

G2(I; 1 )G( - I ;  1)[G(0; 1 ) -  G(-l; 1)] (2.22) 

a =  • G - - ~ ; ] - ) [ - - ~ i i - ) - - - G ( ~  ~ G ( - / ;  1)1 1~0 

This is shown in Appendix A. Using Eqs. (2.21a, b) and the asymptotic 
expression for Var S , ,  we then find 

(n)= U~ log ( ~  )--{ l +(Ul--U2)Uol--u~a} q d = 4  (2.23a) 

( n ) = ~ 2 - { l + u 2 U o  1-u~a}+.. . ,  d>~5 (2.23b) 

Since again ((S,-(Sn))4)=O(Var2S,), ~3') Eq.(2.10) holds and the 
corrections to Eqs. (2.23a, b) are o(1). 

For the simple random walk Montroll ~34) has derived the following 
asymptotic series for u 0 in powers of 1/2d: 

1 3 12 60 355 
u0= 1 + - ~ - +  ( - ~ +  ( - ~ +  ( - ~ - +  ( - ~ +  ... (2.24) 

In Appendix A we derive a similar series for u 2 for d>/5 :  

2 12 78 570 4650 
.2 = 5 a - +  (TaSr + ( 5 2 7  + + ... (2.25) 

and one for a for d ~> 4: 

1 4 23 160 1294 
a -  (2d) 2 + ( - ~ + ~ +  ( - - ~ + ~ +  ... (2.26) 

From a numerical analysis of Eq. (2.4) for the simple random walk in d = 4 
we estimate that u 0 = 1.239 • 0.001 and u 2 = 0.139 • 0.001. 
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If, for d = 4, m 3 = oo this may have its effect on Eq. (2.23a), but only 
after the second term. I f / ~ ( 0 ) -  1 + �89 Y~i.j. CijOiO j = o(1012/log 101), 0--, 0, 
Eq. (2.23a) is unaffected up to and including the term of order 1. I 

Equations (2.12), (2.16), (2.19), and (2.23a, b) are the results for (n) 
for small values of q for the class of unbiased random walks with finite 
single-step variance. We next consider random walks with m 2 < m and r 4= 0 
(biased). 2 Jain and Pruitt {29) have shown that all random walks in this class 
are strongly transient, regardless of the dimensionality. This property means 
that G'(0; 1) < oo and implies that G(0; z) has the asymptotic form given by 
Eq. (2.20b). In addition, Jain and Orey (26) have proved that for all strongly 
transient random walks V a r S , ~ - { F ( 1 - - F ) +  2a}n. As mentioned earlier, 
( ( S , -  (S , ) )  4) = O(Var z S~) for random walks with d >/3 and for a large 
class of strongly transient random walks in d = 1 and 2, including those for 
which G"(0; 1 )<  oo. By a straightforward generalization of the proof for 
G'(0; 1)< oo given in Ref. 29 it can be shown, using G(l; 1)~< G(0; 1) for 
14= 0, that if/~ 4= 0 and m2 < oo all the derivatives of G(0; z) at z = 1 are 
finite. It then follows that (n) is given by Eq. (2.23b) with u0, u2, and a 
related to the Green's function through Eqs. (2.20b) and (2.22). 

It remains to consider the class of random walks with m2 = c~. This is 
the hardest class (obs.: if m 1 = oo, ~ is not defined and the terms "biased" 
and "unbiased" lose their meaning). If the random walk is strongly transient, 
which is always the case when d >/5, (n) is, of course, given by Eq. (2.23b) 
(with the proviso mentioned before for d =  1 and 2). If not, a variety of 
asymptotic behavior may be expected depending on p (see Refs. 49 and 50 
for some interesting properties of random walks in this class). If the random 
walk is transient, which is the case when m 1 < oo and r 4= 0 (33) or when 
d/> 3, it is clear that (S , ) -~ ( 1 - - F ) n  and that, by Eq. (2.6), (n)--Uo/q. In 
Ref. 31 it is shown that when d>~ 3 Var S,  ~- {F(1 - F )  + 2a}n, except when 
d= 3 and Y'I~L G2(I; 1) G(-l; 1) = oo in which case a = oo and Var S,  = 
O(n log n). (2s) Using Eq. (2.3) one then easily shows that (n) = Uo/q + o(q ~/2) 
for d = 3 and (n) = Uo/q + o(log q) for d = 4. Higher-order terms in q can be 
obtained in both cases if the behavior of G(0;z)  is known for z ~ 1. For 
recurrent random walks in d =  1 and 2 with m2 = oo very little is known 
thus far about the probability distribution of S , .  This lack of knowledge bars 
a statement about the asymptotic behavior of (n). 

Before concluding this section we remark the following. Consider a 
random walk p with p ( 0 ) =  0 and the "scaled" random walk p '  with 
p ' ( 0 ) = p  0 and p'(l)= ( 1 - p o ) p ( l ) ,  lr for some 0 < P0 < 1, i.e., the 
random walk obtained from p by giving the walker at each step a probability 

Part of the results in this section were presented in Ref. 23 (without a derivation). There a r e  
two misprints in that paper: on pp. 370 and 371 the word "asymmetr ic"  should be replaced 
by "biased." 
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P0 to pause instead of proceeding. A simple argument shows that the 
averages (n) and (n) '  for these random walks satisfy the relation ( n ) ' =  
(n)/(1 - P0). Since this is an exact relation and independent of q it should be 
reflected to each order of q in the asymptotic expressions derived in this 
section. The reader may find it instructive to see how this comes about in 
each of the cases considered. 

3. EXTENSION TO IMPERFECT TRAPS 

Up to now we have been concerned with perfect traps. We shall now 
extend the results of the previous section to imperfect traps. Let the traps be 
such that the walker, when stepping on any one of them, has a probability t/ 
to remain free (i.e., to continue his random walk) and a probability 1 - r / to 
be trapped. Let again fn denote the probability than the walker has not been 
trapped after n steps. It is clear that with this extension f ,  can no longer be 
expressed in terms of the stochastic variable S,  alone. In the course of his 
walk the walker may return not only to nontrapping points but also to t raps .  
In the latter case one or more "escapes" take place and to fit these into the 
description the multiplicity of the visits to traps must be taken into account. 

Our first step is the statement that Eq. (2.1) generalizes to 

n + l  k V(n k ' \  
f ~ =  ~ I  ( 1 - - q + r  1 q) /, n>/O (3.1) 

k = l  

where V~ k), k = 1,..., n + 1, is the number of distinct lattice points visited by 
the walker exactly k times (V(, k) = 0 for k > n + 1) and the average is over 
all walks of n steps on the lattice without traps. To see this, observe that if 
the walker visits a certain point k times, then if this point is not a trap he 
remains free at each of his visits, whereas if it is a trap he can only remain 
free by escaping k times. These two contingencies have probability 1 - q and 
r/kq, respectively. To be still free after n steps the walker has to survive all 
visits made to traps. Since the trap distribution is random this implies 
Eq. (3.1). 

We assume 1/< 1. Just as in the case of perfect traps f ,  is monotone, 
nonincreasing in n and, by Eq. (3.3) in Ref. 21, convex. Since Y'k V(~ ) = S,  it 
follows from Eq. (3.1) that fn(q,~l)<~f,((1--r/)q, 0), so that f , ~ 0  as 
n ~ oo for all nondegenerate random walks. The average number of steps 
until trapping (n) is again given by Eq. (2.2). 

To find (n) we require the knowledge of the joint probability distri- 
r r,-(k)~,+l for all lengths n of the walk. The bution of the set of variables ~ , ,  ~k= 

variables V(n k) are mutually correlated stochastic variables, the joint 
probability distribution of which is difficult to study in detail, except in some 
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trivial cases, and about which so far not much is known. The averages 
(V(,k)), however, can be found from the simple equation 

z"(V~.k))  - -  - 1 G(O;  z)  I / (l-z)2Gz(O;z) 
n = O  

(3.2) 

which was derived by Montroll and Weiss. (5) 
To obtain an asymptotic expansion for (n) valid for small q we shall 

follow the approach developed in the previous section. We write 

f ,  = (e -e")  (3.3) 

with 

n + l  

U, := S" ,o h~ _,v(~) (3.3a) 
k = l  

2 k := --log(1 - q + rffq) (3.3b) 

and make the cumulant expansion of logf~. Note that 

0 <21~<22~< ... <2 .+~  ~<2 < oo (3.4) 

(Note also that in the symbol U, we suppress the dependence on q and r/.) 
We are interested in the asymptotic behavior of ((.7,) and the cumulants of 
Un for small q and large n. 

Using an ergodic theorem due to Kingman, (51) together with Eq. (3.4), 
we prove in AppendixB that for an arbitrary random walk 
lim._~oo n-l(Un) = :  ff exists and 

lim n 1U, = ~, with probability 1 (3.5) 
n~OO 

This is the strong law for the stochastic variables U,. For recurrent random 
walks, since G(0; 1 )=  oo, we deduce from Eq. (3.2) that 
l im,~oon- l (v( ,k))=0 for all k. Since O<U,<<.)cS,, by Eqs. (3.3a) and 
(3.4), it follows from Eq. (2.4) that in this case ~=  0. For transient random 
walks, on the other hand, we have (V~ ~)) ~ _ F k - l ( 1 - F ) 2 n  for fixed k and 
hence 

where 
limn_~m 

~ = ( 1 - F )  2 ~ ~.kF k ' (3.6) 
k = l  

that we use Eq. (3.4) and (S , ) -~  (1 - F ) n  to show 
--1 ~ l > k l ~ l < V ( l ) >  -4 0 as k-4 oo. In the latter case 0 < { < oo. 
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Equation (3.5) implies the weak law: lim,.o~ P[I n -  1U, -- ~[ > e ] = 0, 
for e > 0 .  Since 0 < U , ~ 2 ( n + l )  we have, for any e > 0 ,  the bound 
Var U, ~ 2Z(n + 1)2p[I U , -  (U,)[ > en] + ~2n2 and with the weak law this 
leads to 

lira n-2 Var U n = 0 (3.7) 
rt -+OO 

For recurrent random walks this result, as we shall see later, is not strong 
enough for our purpose. For transient random walks, however, it follows 
from Eq. (3.7) that 

lim ((U, - (U,)) J') = O, for all j >/2 (3.8) 

where it is crucial that ~ > 0 in Eq. (3.6). Observe that Eqs. (3.5), (3.7), and 
(3.8) hold for all 0 < q ~< 1 and 0 ~< r/< 1. 

We need Eq. (3.8) to calculate (n) for q-~0. By Eqs. (3.3a, b) 
((U, - (U,)) J) is a power series in q that begins with qJ and has coefficients 
that are functions of n and r/. Equation (3.8) implies, by a well-known 
theorem (cf. Ref. 37, p. 232), that for transient random walks these coef- 
ficients are all o(n ]) and therefore that the term of leading order in q in the 
asymptotic expansion of (n) is determined by the asymptotic behavior for 
q ~ 0 and n ~ oo of (U,) alone and that the cumulants of U, contribute only 
in higher order. Noting that 2 k ~- (1 - r/k) q[1 + O(q)] uniformly in k and 
using Eq. (3.6), we find that (U~)= { ( 1 -  t / ) ( 1 - F ) / ( 1 -  rIF)}nq[1 + O(q)] 
uniformly in n, and hence 

(n)-~ ( 1 - F ) - 1 +  q 

Thus we have calculated the leading term of (n) for transient random 
walks. To go further we need to know more about the joint probability 
distribution of {V(, k)}k>l. To begin with, we need to know Vat U, to leading 
order in q and n. This requires a calculation of the leading term in n of 
Cov(V(, k), V(, k')) := (V(, k) V(, k')) - (v(,k))(V(, k')) for all k, k'  >/1. To evaluate 
(n) we must also extend the expansion of (U,) beyond the term of leading 
order in q and n. If we combine the first two terms in the cumulant 
expansion of logfn we have, using Eqs. (3.3a, b), 

( U , ) -  �89 Var U,~_O(n)q-  �89 2, q-~O (3.10) 

with 

qi(n) : - - ~  (1 -~lk)(V(~ k)) (3.10a) 
k 

~,(n) := - - ~  (1 -- ,lk)Z(v(, k)) + ~. (1 -- ,k)(1 -- r/k') Cov(V(~ k,, V(, k',) (3.lOb) 
k k ,k '  
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From Eq. (3.2) it follows that 

znO(n) = l / ( 1 -  z)2 [ G(O; z) + 1@~ ] (3.11) 
tt=O 

and with Darboux's theorem we can easily deduce from this equation an 
expansion for 0(n). It is much harder to find q/(n). In Appendix C we 
calculate q/(n) to leading order in n for random walks with d ~> 3 and for 
strongly transient random walks in d =  1 and 2. It is the work of Jain et 
al. (26-31) that has inspired this calculation. 

For strongly transient random walks we find 

O(n) = Voln + (Vo 1 2f_ U2Vo 2) _~_ o(1) (3.12a) 

q J ( n ) ~ [ - V o 2 ( l + q F i  2aJn (3.12b) 
\l_--Z-~/ + 

with 

Vo:=Uo + U ( 1 - ~ )  (3.13a) 

a : =  Z + r/ 2 1--;1 G(l; 1)G(-I;  1)I 

(3.13b) 

This leads to the expansion 

( n ) =  - l+u2vo - -V2a+ 1_~-- ~ +.. .  (3.14) 

which generalizes Eq. (2.23b). For random walks with r = 0 and m3 < oo in 
d = 3  a n d 4 w e f i n d  

lVo 
ln+27r-1/2u~vo2nl/2+o(logn), d = 3  (3.15a) 

O(n) = Voln + H1Uo 2 log n + {Vo 1 + (yu 1 - H2)Uo 2 } -I- o(1/n~/2), 
d = 4  (3.15b) 

(1/2~z2v~C2)n log n, d = 3 (3.16a) 

\ l _ t l F /  + 2a n, d = 4  (3.16b) 
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and we arrive at 

(~ )1 /2  1 u ~ v o Z l o g ( ~ ) + . . . ,  d = 3  (3.17a) (n) = v ~  - UlVo i + -~  
q 

( n ) =  V---~~ - u l v o l l ~  ( ~ )  - l l + ( u l - - u 2 ) v f f l - v ~ a  + l ~_-~F~FI + 

d = 4  (3.17b) 

thus generalizing Eqs. (2.19) and (2.23a). For random walks in d = 3 and 4 
with m3 = m similar expansions can be obtained if the behavior of G(0; z) 
for z ~ 1 is known. 

In Appendix C we further show that in all the cases considered above 
Var U, ~ Vat S n for all 0 < q < 1 and 0 ~ r/< 1. This implies that the higher 
powers of q in (U,) - �89 Var U, each carry a coefficient that is O(Var Sn), so 
that their contribution to (n) is o(1). Finally, in Appendix D we prove that 
in all these cases ((Un -- (U~)) 4) = O(Var 2 U~) (with a proviso for strongly 
transient random walks in d =  1 and 2 with G"(0; 1)=  oo). This in turn 
implies that U, satisfies an equation similar to Eq. (2.10) and ensures that 
the higher cumulants of U, also contribute only in higher order. Thus Eqs. 
(3.14) and (3.17a, b) are exact. 

The generalization of Section 2 is now nearly complete and it remains 
to consider recurrent random walks. When d =  2, a = 0 and m 2 < oo it 
follows from Eqs. (2.13) and (3.2) that for f ixed k 

<~) 2 O(n/log 3 n) (3.18) (V ,  ) = n/u 1 log 2 un + 

with the leading term independent (!) of k. By Eqs. (3.3a, b) 
(Un) = O(n) q[1 + O(q)] uniformly in n, with O(n) given by Eq. (3.10a), and 
it follows from Eqs. (2.13) (provided m 3 < oo) and (3.11) that 

( - + 1 - 7 - + O(n/log 3 n) (3.19) 
O(n) u l logun  Um 1 tl u~ log 2un 

[see also Eq. (2.15)]. After some algebra we find 

r/ 1 -~ + 
l - q q  

lo lo (u   q) ] 
+log log  + log(ul u/q ) + ... 

(3.20) 

which generalizes Eq. (2.16). If also in this case Var U n ~ Var S, for all 
0 < q < 1 and 0 ~< r/< 1, then it is clear that the contribution to (n) coming 
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from Var Un is O(1/q log q) because Var S n ~ n2/log 4 n. We expect that it is 
possible to prove Var Un ~ Vat S n along the lines of Ref. 29 with the use of 
the analysis given in Appendix C. Unfortunately, even if this were known to 
bold still more information would be needed to exclude a contribution from 
the higher cumulants of Un of the order of the terms calculated. Thus, 
whether or not Eq. (3.20) is exact is an open question. Observe that 
(n) - (n)~= 0 -~ r//(l - t/)q, as for transient random walks [Eq. (3.9)]. 

For all other recurrent random walks witb d = 2 the above argument 
carries through. The average O(n) behaves differently from Eq. (3.19) and 
(n) has a leading term of higher order in q than q - I  log q, but to leading 
order in n, (V~ k)) is independent of k ]because in Eq. (3.2) G(0; z ) ~  oo as 
z--+ 1] and one finds that ( n ) -  (n)~_ 0 ~ r//(1 - r / ) q  in all cases. 

For recurrent random walks in d = 1 very little can be said in general. 
Examples are easily found for which ( n ) -  (n) ,_  0 ~ - r / / ( 1 -  r/)q does not 
hold. For example, for the simple random walk the average length of the first 
"run," starting with the first and ending with the second visit to a trap, is 
3 --1 1 ~ 3 --1 q - - 1 .  5q - 5 - s q  and not 

Before we conclude this section we briefly discuss a further extension of 
our model, viz. to the case of different types of imperfect traps. Suppose that 
each lattice point can be in either of t + 1 different states. Witb probability 
1 - q it is a nontrapping point and with probabili typiq,  i = 1,..., t, it is a trap 
with "escape" parameter 0 ~ r h < 1. The states of different lattice points are 
again independent. The set {Pi}~-i may be any set of probabilities with 
Y~i P, = i. This defines a random distribution of t different types of imperfect 
traps. 

A little reflection shows that Eq. (3.1) generalizes to 

It is clear that this extension introduces no additional complications as it 
involves only a change in parameters. Therefore we can follow the same lines 
of reasoning as in the case of a single type of imperfect trap. The stochastic 
variable of interest is now 

n + l  

U. := ~ 2k V(. k) (3.22a) 
k - 1  

with 

2k:=-- log[1--q+( ' P, tl~)q] (3.22b) 

It is important to note that the inequalities (3.4) hold in this general case as 
well. They played an important role in the derivation of Eqs. (3.5) and (3.9). 
We list the main results without derivation. 
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with 

For transient  random walks 

(n )  ~-- Vo/q, q -4 0 (3.23) 

Vo ~ := ~S ~ pi[Uo + n,/(1 - r/i) ] -~ (3.24a) 
i 

The correction terms follow again from Eq. (3.10). The generalization of 
r is easy. Writing r r/), to display the dependence on r/in Eq. (3.10a), 
we see from Eqs. (3.22a, b) that O(n; r/) generalizes to Y~i PiO(n; r/i). Thus, in 
Eqs. (3.12a) and (3.15a, b) vs ~ is replaced by that given in Eq. (3.24a) and 
Vo 2 by 

Wo 2 := ~ pi[Uo + n ] ( 1  - r/i)]-2 (3.24b) 
i 

leading to a replacement of U~Vo I by UlVoWo 2 in the two second terms in 
Eqs. (3.17a, b). Furthermore, in Eq.(3.20) r / / (1 - r / )  is replaced by 
~ i  Pir/J( 1 - r / i )  and the first three terms are unaffected. The generalization 
of gt(n) in Eq. (3.10) is not so easy. To find it one has to repeat a large part 
of the calculation given in Appendix C starting from Eqs. (3.22a, b). In 
particular, the generalization of Eq. (3.13b) is somewhat complicated. 

4. DISCUSSION 

First we discuss Section 2 which treated the case of perfect traps. In the 
cumulant expansion of log f ,  [Eqs. (2.8a, b)] we have neglected the higher 
cumulants of S.  as well as certain higher-order terms in the expansion of 
(Sn) and Var S n. To the sum ( n ) =  Y~nf,, however, these neglected terms 
turn out to give additive corrections that are of higher order in q than the 
terms calculated. It is for this reason that Eqs. (2.8a, b) are well suited to 
find (n) for small q. On the other hand, to the individual f~ the neglected 
terms give multiplicative corrections and therefore Eqs. (2.8a, b) are not 
suited to find f~ for large n. What is worse, for any q > 0, no matter how 
small, the terms in Eq. (2.8b) blow up as n-4 or. 

In this connection it is worth mentioning a strong result on the 
asymptotic behavior off~ for n-4 oo found by Donsker and Varadhan ~25) 
(see also Refs. 52-55). They proved that for aperiodic random walks, either 
with the property that 1 -/~(0) ~- A (e0) ] 0 t ~, 0 -4 0, where e o := 0/] 0 I, A is a 
strictly positive, bounded function, A ( e o ) = A ( - e o )  and 0 < a < 2, or with 
the property p = 0 and m 2 < ov (in which case a = 2), the following holds 
for a l l 2 > 0 :  

l i m  n -el(a+ ~) log f ,  = --2 ~/(a+ ~) (4.1) 
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where fl > 0 is a specified function ofp .  The derivation of this result is truly 
impressive and rather complex. There is no obvious connection between Eqs. 
(2.8a, b) and (4.1). These relate to two different regimes, one with n fixed 
and q ~ 0, the other with n ~ oe and q fixed, in which the behavior offn as a 
function of n is very different. From Eqs. (2.8a, b) one finds the behavior of 
f ,  for small n and q fixed. Since this determines Y~,f, for small q, Eqs. 
(2.8a, b) served well as a starting point. Equation (4.1) gives only the tail of 

f , .  Thus it should be clear that one learns little from Eq. (4.1) about the 
asymptotic behavior of (n) for q--, 0. Equation (4.1) does, however, imply 
that (n) and all the higher moments of n are finite for all q > 0, a fact which 
we did not establish independently. It seems rather hard to find a suitable 
upper bound for f ,  to prove that (n) < oe for an arbitrary nondegenerate 
random walk. This in contrast to the lower bound f ,  > / ( 1 -  q)(Sn~, which 
follows from Eq. (2.1) and Jensen's inequality and which is the approx- 
imation to fn originally used by Rosenstock. (14) 

The asymptotic expansions found for (n) are valid for small q. How 
large the domain of q-values is for which our results give a reasonable 
approximation to (n) depends, of course, on the coefficients in the expansion. 
For the class of random walks with/~ = 0 and m 2 < ov the results are very 
accurate in most practical cases when d/> 3 and q ~< 0.05, the more so as d 
increases. For example, for the simple random walk and for q = 0.05 the 
relative contributions to (n) from the successive terms in the expansion are 
1:0.14:0.03 for d = 3 ,  1:0.04:0.04 for d = 4  and 1:0.06 for d = 5 .  For 
d =  2 the situation is less favorable and the corresponding ratios are 
1:0.35:0.09:0.15. In most cases the expansion for d =  2 is useful only if 
q ~< 10 -3. 

It is interesting to compare Eq.(2.16) with the corresponding 
asymptotic expansion, derived by Montroll [see Ref. 56, Eq. (31)], for a 
strictly periodic distribution of traps (with N, the number of lattice points per 
trap, replaced by q - l ) ,  e.g., for the simple random walk. Except for the iden- 
tical leading terms, the two expansions are different in structure. Moreover, 
even for values o f q  as small as q = 10 -2~ the (n) is in the random case 10% 
larger than in the strictly periodic case, which is somewhat surprising. 

For random walks with ~t 4= 0 and m 2 < oo Eq. (2.23b) holds regardless 
of the dimensionality and in most cases it is accurate when q <~ 0.05. For 
example, for the Bernoulli random walk in d = 1 with p(1) = 7 , p ( - 1 ) =  1 - 7  
(�89 < y~< 1) we have G ( 0 ; z ) =  1/[1 - 4 y ( 1  - y ) z 2 ]  v2, G(l; 1 ) = G ( 0 ;  1) for 
l > 0 and G(l; 1) = [(1 - Y)/7]-t G(0; 1) for I < 0 (see Ref. 33, p. 8), so that 
u 0 = 1/(2y -- 1), u 2 = 47(1 -- 7)/(27 -- 1) 3 and a --- 1 -- 7 and the ratio of the 
first two terms in Eq. (2.23b) is 7 q / ( 2 7 -  1). 

If we ask, not for (n), but for the average number (S) of distinct lattice 
points visited by the walker before he is trapped, then the answer is very 
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simple. Indeed, consider a given infinite walk on the lattice without traps 
with the property that there is an infinite sequence of step numbers 
m 0 < m 1 < m 2 < ... at which a new point is visited (such that visits to old 
points occur at intermediate steps). Let Rn= 1 for n = m o , m l , m  2 ..... and 
R ,  = 0 otherwise. Now, if this walk takes place on the lattice with traps, then 
the average under the random distribution of the number of distinct lattice 
points that it visits before running into a trap is S =  1 + 
~ - I R , ( 1  - q)go+nl+''.+n,-l, where the 1 counts the origin. Obviously, 
mo=O and S = l + R m , ( 1 - q ) + R m 2 ( 1 - q ) l + R m , +  . . . .  l + ( 1 - q ) +  
(1 __q)2+ . . . .  q-1. This is true for any walk with the required property. 
But any nondegenerate random walk has this property with probability 1 (as 
S~ ~ ~ with probability l) and hence we have the simple result 

(S)  = q-1 (4.2) 

Equation (4.2) can be shown to be related to the following asymptotic 
property, valid for all random walks except for recurrent random walks in 
d = l :  

( S ~ )  ~- q-1 (4.3) 

Equation (4.3) follows from a combination of the asymptotic expansions for 
(Sn) and (n) given in Section 2. The connection with Eq. (4.2) comes essen- 
tially from Eqs. (2.5) and (2.6), although it is somewhat involved. 
Equation (4.3) is identical with a property first noted by Shuler, Silver, and 
Lindenberg ~5~) for a strictly periodic distribution of traps (with q = N - l ) .  In 
the latter case, however, Eq. (4.2) does not hold and an explanation of 
Eq. (4.3) is far from obvious. Moreover, in this case Eq. (4.3) is less general 
in that it does not hold for all transient random walks in d = 1. 

Next we discuss Section 3, where we considered the extension that is 
obtained by introducing a finite probability for the walker to remain 
untrapped when stepping on a trap. With this extension the model was found 
to be significantly harder, but we were able to generalize the results in nearly 
all the cases considered in Section 2. We further extended the analysis to 
different types of imperfect traps. In this connection it is noteworthy that 
Eq. (3.23) can also be derived starting from a simple approximation. The 
average number of steps that the walker makes between his ith and (i + 1)th 
visit to a trap (given that these take place) is ~ l/q, q -~ 0, for all i ~ 1 ; this 
follows from Eq. (3.9). If the walker "escapes" from a trap there is a 
probability ~<F that he returns to that trap before hitting another one. As 
q-~ 0 the probability of such a return tends to F and the approximation 
consists in assuming that the walker can never return to a trap other than 
through a sequence of such returns. By this approximation every new trap 
visited is with probability p; one with escape parameter r/i, independent of 
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previous visits. This then enables one to derive Eq. (3.23) along the lines 
sketched in Section 4 of Ref. 58. 

The approach followed in this paper to obtain the asymptotic expansion 
for (n) is systematic and exact. More work would be needed to estimate the 
error involved in approximating (n) by the terms derived, let alone to 
establish a possible convergence of the expansion. For this we do not yet 
have the means. For the case d =  2 with/~ = 0 and m 2 < c~ the product ulu 
in Eqs. (2.16) and (3.20) is a very small number when the random walk is 
highly anisotropic [see, e.g., Ref. 34, Eq.(II.22)] and for q>~u~u the 
expansion does not make sense, indicating that convergence is not a trivial 
matter. 

We conclude this paper with the following reflection. If one compares 
the results of Section 2 and 3 one is struck by a remarkable similarity. It 
appears that nearly all the terms in the expansions for (n) found for 
imperfect traps can be obtained from the corresponding terms found for the 
perfect-trap case through a simple "recipe": replace G(0;z)  by G ( 0 ; z ) +  
r//(1 - r / )  in the analysis of Section 2 and leave G(l; z) for l=/= 0 untouched. 
In view of the way in which the parameter t /comes into play in the analysis 
of Section 3, it is truly amazing that such a simple recipe exists [see in 
particular Eq. (3.13b)]. There are only two exceptions: in Eqs. (3.14) and 
(3.17b) an extra term --~TF/(1 -- ~F) occurs that does not fit into this picture, 
indicating that the recipe is not exact. We checked Eq. (3.14) for the 
Bernoulli random walk in d =  1. Following the approach of Ref. 7 we 
calculated the exact average length of the first "run" (i.e., the subwalk 
between the first and the second visit to a trap) and found that @ 1 )=  
q - l +  O(q). This is correctly predicted by Eq. (3.14), where the term 
between braces has an expansion in powers of r/ in which for the Bernoulli 
random walk the power r/happens to drop out. 

If one tries to understand why the recipe nearly works but not quite, one 
runs into a somewhat unexpected problem. Not only is the recipe not exact, 
as it is formulated above it is not even unambiguous. The reason for this is 
simply that the functions G(l; z) for different values of l are related. As an 
example take the simple random walk. If, instead of u o = G(0; 1), we would 
have used the equivalent expression u 0 = 1 + (2d) -1 Y~ltl=l G(l; 1), then our 
recipe obviously would have led to totally wrong answers. At first this 
objection may seem a bit pedantic, but a closer inspection reveals that it is a 
serious one and that until one manages to remove it there is little or no sense 
in trying to explain the situation. Still, the observed similarity is striking and 
there is no harm in trying to develop some feeling for it. 

To that end consider once again the infinite lattice L. Suppose that we 
divide L into identical finite unit cells L and place identical imperfect traps 
at identical position Ii@[, , i =  1, 2 ..... This gives us a periodic trap 

822/37/3 4-6 
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configuration on L. For the trapping problem it suffices to consider a single 
unit cell with periodic boundary conditions. Let the walker start from l o E L, 
let Ti; n denote the probability that he is trapped by trap i at step n and let 

f,.(z) := Y~-0 z"Ti;n. A simple argument shows that 

G ( b  - l i ; z )  + ~ _ ~  ji f~.(z) = a ( l  i - l 0 ; z ) ,  j = 1, 2 , . . .  ( 4 . 4 )  

[see Ref. 58, Eq. (4.2)], where now G(I; z) is the Green's function for L. If 
we are not interested in the label of the trap at which the walk ends, we may 
sum f.(z) over i to obtain Y~if/(z)=:f(z) and the average number of steps 
until trapping, given that trapping occurs, then follows from 

(n) = f ' (1 ) / f (1 )  (4.5) 

Equations (4.4) and (4.5) express the fact that for any arrangement of traps 
in L that does not include the starting point the recipe works in principle, at 
least in the form in which the equations appear here. If, however, the starting 
point is a trap it does not work. Yet, if we average over all possible starting 
points and use that ~te~ G(l; z ) =  1/(1 - z ) ,  then we may replace the right- 
hand side of Eq. (4.4) by l/N(1 - z), where N is the number of lattice points 
in L, and the recipe works again. 

This example indicates a possible origin of the observed similarity and 
at the same time illustrates the limitations of the recipe. In the random trap 
model the unit cell is infinite and we have to average over all possible trap 
configurations, which makes the situation only more complicated. 
Apparently the recipe fails in this case (a failure which, incidentally, is not 
repaired if we exclude the origin from being a trap). 

All in all, it appears that interesting, and possibly useful, connections 
lay hidden behind the relations derived. 

A C K N O W L E D G M E N T  
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A P P E N D I X  A 

For strongly transient random walks G(0; z) behaves for z ~ 1 as given 
by Eq. (2.20b) with 
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(" S u 0 = (2~r) -a dO, ... dOd[1 -- /J(0)]- '  (A1) 

u o + u z = (2zr) -a dO~ ... dOa[1 - / J (0 ) ]  : (A2) 

[see Eq. (2.4)]. For the simple random walk Montroll (34) has derived the 
asymptotic series (2.24) for u 0. We follow his approach and derive a similar 
series for Uo+U z. For the simple random walk / J ( 0 ) = d - '  Y~/d_ 1 cos0 i. 
Using the identity s - Z =  f ~  dt te -~t, we can write Eq. (A2) as 

u o + u a dt te t[lo(t/d)]d (A3) 
"0 

where Io(x ) := n -1 f'~ dO exp(x cos 0) is the modified Bessel function of order 
- -  OO 0. (59) Substituting the expansion Io(x ) -Y~g=o (~x)k/(k!) 2 we find 

3 15 90 630 5005 
u 0 + u 2 = l + - ~ - + ~ §  (-~-~-+ ( ~ - ~ - +  ''" (A4) 

Subtraction of Eq. (2.24) leads to Eq. (2.25). 
As mentioned in the text, for all strongly transient random walks and 

for a large class of random walks with d />3 Var S n ~  [ F ( 1 - F ) + 2 a ] n .  
From the expressions given in Refs. 26 (p. 375), 28 (p. 374), and 31 (p. 99) 
it appears that 

a = V' ( 1 - - F ) F t F _ t ( I - F _ l ) F l  (A5) 
z.... 1 -- FIF  t 14:0 

where F I stands for the total probability that the walker reaches l from 0. 
The generating function for first passage in I is F ( l ; z ) =  [ G ( l ; z ) - 6 / 0 ] /  
G(0;z). (34) Noting that F I = F ( I ;  1) we get for a the expression given in 
Eq. (2.22). 

For the simple random walk it is easy to find for a an asymptotic 
expression similar to Eq. (A4). Indeed, using Eq. (2.4) we may write 

o o  d 

G(l; 1)=fo  dt e - t  [1  Ili(t/d) (a6)  
i = 1  

where Im(X ) := n -  1 fa dO exp(x cos 0) cos(m0), m E Z, is the modified Bessel 
function of order m, and if we substitute the expansion Im(X)= 
( ix )  m Y~=0 (�89 m + k)!, m >/O, we can find an asymptotic series for 
G(I; 1) for any l. Doing so for a few lattice points close to 0 and noting that 
G(l; 1)= O[(1/2d) zill~l ] we readily find Eq. (2.26). 
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APPENDIX B 

To study U. it is convenient to write Eq. (3.3a) in the form 

u.= Z Z v'." (B1) 
k>/1 l>/k 

with fll : =  21  and ~t k := 2 k - 2 k_ 1, k ) 2. By Eq. (3.4) ~/k ~ O for all k. To 
prove Eq. (3.5) we introduce stochastic variables Vtmk. ) :-----the number of 
distinct lattice points visited exactly k times on or between steps m and n 
(0 < m ~< n), and put 

Win, := ~ ~tk Z V(ml)" (B2) 
k>/1 l<~l<k 

By Eqs. (3.4), (B1), and (B2) U. = 2 S . -  Wow. 
The variables Win. have the following properties: (i) Wm. ~ Wmi + Wi~ 

for all m < i < n, (ii) the process {Win. } is strictly stationary (i.e., the joint 
probability distributions of the sets { Wm. } and { W m + ~ .+ ~ } are identical), 
(iii) (Won) is finite and (W0.) > / -An  for some constant A and all n. This is 
easily seen by inspection; (i) follows from the fact that for any k the sum 
Y't<~ V~). satisfies the inequality while P k ) 0 ,  (i i)is an immediate conse- 
quence of the independence of the individual steps in a random walk, and 
(iii) is trivial because 0 ~< ~t k ~< 2 < oo and V ~  >/0 for all k. 

Stochastic variables that satisfy (i)-(iii) are said to form a subadditive 
process and by an ergodic theorem of Kingman (s~) the (finite) limit 

lim n -1W0. = ~ (B3) 
n --*OO 

exists with probability 1 and in mean, and (~)=inf.~>ln !(Won)= 
l im. .~  n-~(Wo.). The last equality follows from (i), by which (W0z~)~ 
2(W0,). 

To prove Eq. (3.5) it remains to show that ~ = (~) with probability 1. 
From Eqs. (3.4) and (B2) one easily deduces that -2 i  ~< W0, - Wi, ~ ) d  for 
any 0 < i ~< n and this implies that for a given i > 0 

lim n - l W i . =  lim n ~W0~ (B4) 
n --*o~ n --*oo 

Equation (B4) means that for any given i > 0 the limit ~ depends on the walk 
only through the steps i + 1, i + 2,... and not through any of the previous 
steps (i.e., ~ is a so-called "tail" event). Since the individual steps are 
independent it follows from Kolmogorov's zero-one law (see Ref. 60, p. 102) 
that ~ is equal to a constant with probability 1 and hence ~ =  (~) with 
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probability 1, as asserted. Since U n = 2 S , -  Won and since it is known that 
limn~o n-~Sn =limn~o~ n-~(Sn)  (=1 - -F )  with probability 1 (Ref. 33, 
p. 38), this proves Eq. (3.5). 

APPENDIX C 

In this Appendix we consider the following two classes of random 
walks: (I) random walks in d = 3  with ~ l ~ L G 2 ( l ; 1 ) G ( - l ; 1 ) = m ;  
(II) random walks with d/> 3 not in class I and strongly transient random 
walks in d =  1 and 2 (for all random walks in this class 
Y~,~L G2(I; 1) G(--I; 1) < oo). (26'28'31) 

We calculate Var U, to leading order in q and n. We further calculate 
the term of order q2 in (U,)  and show that Eqs. (3.12b) and (3.16a, b) hold. 
Finally we show that Var U n ~ Var S n for all 0 < q < 1 and 0 ~ r /< 1. We 
assume that the random walk is aperiodic and that F > 0. 

We start from Eq. (B 1) and write 

v .=  uks  (Cla) 
k ~ l  

Var g n = ~ t, tkla k, Cov(S~ k), S~ k',) (Clb)  
k,k~> 1 

where S~ k~ is the number of lattice points visited at least k times after n steps 
and/1 k = log(1 - q + l l k - l q )  - -  log(1 - q + qkq). Let l, denote the position of 
the walker at step n and consider the following indicator stochastic variables: 

Zi , . . . i k :=I[ l i ,  . . . . .  l ik; l i=/=l, , ,a~ {i 1 + 1,..., oo }\{i2,..., ik} ] 

Zq.. . ,k;n := I[li, . . . . .  l,k; lil 4= l~, a ~ {i 1 + 1,..., n}\{i2,..., ik} ] 

W i l . . . i k ; n  :~-- Z i l . . . i k ; n  - g i l . . . i  k 

:= l[Iil . . . . .  li~; lq r l~, a ~ {i 1 + 1 ..... n}\{i  2 ..... ik}; 

z fl > n:  l i l  =- l~] 

k / > l ,  l ~ < i l < . . . < i k ,  n >/ i k 

A little reflection shows that 

s ' : ' =  z ,1  ,k;~ (c2) 
0 ~ i 1 <  � 9  <ik<~n 

(For k > n + 1 the sum in the right-hand side is empty.) We split S~ k) into 
two parts: 

= W (k) (C3) r' .k '  + . 
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with 
y(k) .__ �9 - -  / ,  

0 < i 1 <  � 9  < i k < n  

w':' := 2 
0~</l< �9 

and further split y(k) writing n ' 

with 

Zi" " "ik (C3a) 

Wi. . . ik  ;, (C3b) 

k - 1  

y(k) _ x-(k) _ (C4) 
n - - ~ n  Z Z Z i l ' "  " i l i l + i ' "  "ik 

I = 1  0 ~ < i 1 < . . . < i l < ~ n < i l + l < . . . < i k < o O  

x(:':= Z zl (r 
O<i<n 

where for fixed i 

z l k )  :~----- Z Z i i 2 . . .  ik 
i < i 2 <  - . .  <ik<o~ 

=/ [a f t e r  step i the walker returns to l i exactly k - 1 times] (C5a) 

The reason for choosing to split S~ k) in this way lies in the two ine- 
qualities 

W(~+ l) <~ w~k) (C6a) 

k - 1  

X(nk)__ y~k) <~ S ~ W(~) (C6b) 
1 = 1  

which, as we shall see in a moment, play a key role in the calculations. 
Equation (C6a) is not much deeper than the obvious inequality ,~(k+ 1) ~ ~(k) 
To see that it holds, write Wi,i2. . . ik§ Wi2...~k+,;,, substitute this 
product into Eq. (C3b) and use Y~I~_-~Z/li2 i2~< 1. To see that Eq. (C6b) 

holds, use ~ ,< i ,+ ,< . . .  < ik < OO Z il . . . ili1+1" �9 " ik ~ W i l  . . . i! ; n '  

Cov(X, , X ,  ) to leading order in n. In the following we shall calculate (k) (k') 
We shall show that (k) (k') Cov(X, , X ,  ) for all pairs k, k '  and the two sums 

(k) (k') (Y~klZkVar ' /2x~k))  2 and Y~k,k'l~kPk' Cov(X, , X ,  ) f o r  all 0 < q <  1 and 
0 ~< r /< 1 are all of the same order in n and have the property that they grow 
faster than n in class I and proportional to n in class II. This will be seen to 
imply that in both classes 

Cov(S(k), S(k,)) (k) (k') ~-- Cov(X, , X ,  ) (C7a) 

flk Var l /2  S(n k) ~ Z / ' t k  Var 1/2 g ( : )  (CTb) 
k k 
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and, with Eq. (C lb), 

Var Un ~ p' ~k) ~k') ~- /~k k Cov(Xn  , X .  ) (C7c )  
k , k '  

Our calculation will thus provide us with the leading order behavior in n of 
VarU n and also make it evident that V a r U , ~ V a r S ,  (=VarS~ 1)) and 
Y~.kBkVarl/Zs~nk) ~ V a r a / Z S n  . We shall need the latter two relations in 
Appendix D. To prove Eqs. (C7a, b) we use Eqs. (C6a, b) and a bound 
obtained for (W~1)2). In Refs. 29 (p. 376) and 32 (p. 97) it is shown that in 
class I (W~I)~)= O(n), while in class II (W~ ~)~) =o(n).  This means that in 
both classes (W~ ~)2) = o(Cov(X~ k), Y~k'))) for any pair k, k'  and similarly for 
the two sums in the right-hand side of Eqs. (C7b, c). Equation (C7a) follows 
in two steps. First, by Eqs. (C6a, b) Var(X~ k) - y~k)) <~ (k -- 1)2(W~1)2), and 
together with the Schwarz inequality this implies that Cov(Y~ k), y~k,))~ 

(k) (k') Cov(X, ,X ,  ). Second, by Eq. (C6a) Var(S~ k ' -  Y~')~< (W~ ~'2) and hence 
~k) ~k') ~k) --, ,, leading to Eq. (C7a). Equations (C7b, c) Cov(S, , S ,  ) ~- Cov(Y, , V~k')~ 

do not follow straight from Eq. (C7a). They follow from a similar argument 
plus the fact that Y ~ k ( k - - 1 ) # k < ~  for a l l 0 < q <  1 a n d 0 ~ < q <  1. 

Equation (C7c) is important because the right-hand side is easier to 
evaluate than the left-hand side. From now on we shall concentrate on the 
calculation of this right-hand side. 

By Equation (C5) 

~k~ ~k') ~_ (C8)  Coy(X~ x .  ) = Cov(Zl  , zlk',) + + (,. k', + 
i - 0  j - 1  

with 
j - -1  

a) k'k'' Z C~ k', := Zj ) (C8a) 
i = 0  

The first sum in Eq. (C8) is easy. Indeed, for k 4= k' we have (k) (k') (z , .  z i ) = 0, 
by Eq.(CSa), and thus Cov(ZIk) , z Ik 'O - /7(k)\/7"~k')\ Furthermore, 

�9 - -  - - \ ~ ' i  / \ L ' i  / "  

~k) ~k) . . . .  Since (ZI k)) ( z~k ' )=  Cov(Zi , Z  i ) = V a r Z l  k) (ZI k') (Zlk)) z = 
Fk- l (1  - - F )  this gives us 

+ Cov(ZIk) ,ZIk '))  = [Fk - l (1 - -F )~kk , - -F  k 1 F k ' - l ( l - - F ) Z ] ( n  + 1) (C9) 
i = 0  

To write out the second sum in Eq. (C8) we define 

TI k) := the number of the step at which the walker visits l for the 
k th time; 

P~k)(l) := the probability that the walker returns to 0 exactly k - 1 
times during steps 1,..., n and visits I at step n. 
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In Eq. (C8a)  (k) (k') Cov(Z~0k), 7(k')~ , ' Cov(Zi  ,Zs" ) =  - j - i J ,  a > i, and we write out 

j - I  k - 1  
a(k,k') _ 1)(l)b}k-m'k') (C 10) ; - Z Z  2 p(m+ *j--i 

i = 0  1 m = 0  

with 

bl k'k') :=P,[T(o k-l) < m ,  r~k)=  oo, T} k'-l) < oo, T}k" = m ]  

-- Pt[T(ok-" < m,  T~ok'= o0] Pt[T}k'-I' < oo, T}k')= o0] (C11) 

where Pt stands for probabil i ty with respect to the random walk starting in l. 
In Eq. (CIO) we sum over the position l = lj_ i of  the walker at step j -  i. If  
z~k)= 1 the walker returns to 0 exactly k - 1  times. Of  these returns 
m = 0,..., k -  1 may  take place during the first j - i  steps. If  Z)k_ '] = 1 the 
walker returns to l exactly k '  - 1 times after step j - i. 

To find the probabil i ty P(~'+~)(l) it is convenient to introduce the 
generating function 

p(m+l)(l;z):= ~ znp(m+l)(l) ( C 1 2 )  

n = o  

First we take l = 0. P(,m+l)(O) is the probabil i ty that  the walker returns to 0 
for the mth  time at step n. A standard type of argument shows that therefore 

P(m+l)(O;z) =Fm(O;z), m >/1 (C13a)  

and P~  z) = 0, where F(0;  z) is the generating function for first return to 
0. For  lye 0, on the other hand, P~m+l)(l) is the probabil i ty that  the walker 
returns to 0 for the mth  time at some step n '  < n and in the remaining n - n '  
steps walks from 0 to l without returning to 0, arriving in l at step n and 
possibly visiting l at some earlier step. Now it is easily recognized that the 
probabil i ty for the latter event is equal to the probabil i ty that the walker 
after the remainig n -  n '  steps reaches l for thef irs t  time with returns to 0 
allowed. Therefore we have 

P(m+ t)(l; z) = Fm(O; z) F(l; z), I @ O (C13b) 

where F(l; z) is the generating function for first passage in l. 
Before we come to bl k'k') in Eqs. (C10) and ( C l l )  we return to 

Eq. (C lb). Our  first aim is to find the term of leading order in q and n of  
Var U, .  Noting that/~k~-- (1 -- q)qk-lq,  q_,  O, we have 

V a r U ~ _ ~ q  z, q - * O  (C14) 
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with 

~n := (1 -- r/) 2 ~ rlk-lrl k' ' Cov(S (k), S~ k')) 
k,k'>/1 

~ ( 1 - - q )  2 ~ ~k-l~k'-lCov(X(nk),X(:")-.-~:~ (C15) 
k,k' >~ l 

where we use Eq. (C7c). We shall calculate r From Eqs. (C8)-(C10) it 
follows that the generating function 

~'(z) := ~ z"~" 
n=0 

is given by 

(1 - -  ~ ] ) 4  F(1 - F) 
~,(z) = ( ~ - _ - - F - ) ~ - _ - - - ~ ) ( ~ _  z) 

The 

(C16) 

Jr-2(1--0)2(1--Z) 2/~i (m ~-~ 0 ~mp(m+l)(l;z))( kk~l ~ ~k- 1~/<'- lblk'kr 

(C17) 

term with l = 0  in Eq. (C17) is easy. Indeed, by Eq. (C l l )  b~'k')= 
Fk-l(1 - -F)6kk , - -F k 1Fk'-l(1 --F) 2 and using Eq. (C13a) we find that this 
term equals 2~IF(O;z)/(1- r/F(0;z)) times the first term in Eq. (C17). We 
may therefore write 

(1 -- r/)' F(1 - -F)  (1 --Z) -2 1 + r/F(0; z) 
0'(z) - (1 -- r/F)2(1 - t/2F) 1 --r/F(0;z) + 2O"(z) (C18) 

with 

O,,(z) := (1 _ ~])2(1 _ z)_2 z~_~ F ( l ; z ) [  J ,~o 1 ----~(O",z) Z qk ~lik'-,b~k,k,) 
k,k'>/1 

(C18a) 

where we use Eq. (C13b). It remains to find the double sum in Eq. (C18a). 
We shall need most of the rest of this appendix to calculate this sum. 

Equation (C 1 i) can be simplified a little bit. An easy calculation shows 
that 

with 

blk,k') = e~k,k') _ e~k-1,k'), k >~ 2, bl ''k') = e~ l'k') (C 19) 

c~ *'k'' := P,[V'0k' < o o 1 P , [ V l ~ ' - " <  o0, r lk ' )=  oo] 

- -P t [ r~  k) < oo, r}  k'-l> < oo, r lk ' )=  oo ] (C 19a) 
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Similarly, 

e l  k ' k ' )  = d l  k ' k ' )  - -  dl k'k'-'), k' >/2, "t"(k'l) ---- "l"4(k'l) (C20) 

with 

d} k'k') :=Pt[r~ok) < o0, rlk') < o0]--Pl[r~k)< oo]Pt[r}k') < ~ ]  (C20a) 

From Eqs. (C19) and (C20) we get 

2 tlk-lrlk' lblk'k')= (1 -- t/) 2 ~ r/k blk'-ldlk'k') (C21) 
k,k'>l k,k'~l 

To evaluate the right-hand side we write 

d(k,k')___(k,k') qlk,k') F lF k+k' 1 (C22) l --~'1 + -- - 

where we introduce the probabilities 

p}k,k') := p,[T~k)< T}k') < oo1 (C23a) 

q}k,k') :=s l[r}k ' )< r p ) <  ml  (C23b) 

and where F 1 := F(l; 1) is the total probability that the walker reaches l from 
0. To find pl k'k') and ql k'k') we derive a set of recursion relations in k and k' 
valid for l 4= 0. Write 

pl k,k') =Pt[T~ok) < T}k'-l) < T}k') < o0] 

+ S,[r}k ' - l )  < r~k) < rIk') < m] (C24) 

The first term factorizes into P~[T~k)< Tlk'-l)< oo]Pt[T}') < •] and is 
seen to be equal to Fp} k'~'-l). The second term factorizes into PI[T} k' 1) < 

< oo, < Vl*')l S 0 [ T ? <  of which the first factor can be written 
as q(k,k'--i 1) __ q(k,k')l . Together this gives 

p}k,k') =Fplk,k'-~) + Ft[q lk .k ' - l )_  qlk,k',], k' /> 2 (C25a) 

A similar reasoning shows that 

qlkd")=Fpl  k ~'k') +r_l[plk-- l"k ' ) - -p lk 'k"] ,  k>/2  (C25b) 

To complete Eqs. (C25a, b) we also need to know p}k,l), k>/ 1, and q}l,k'), 
k' >/1. These probabilities are easily calculated. Indeed, 

plk, 1 ) = e , [ r ~ o k ) <  T } I ) <  OO1 

=Pt[T(o 1) < T} 1), --oT(1) < (301 

X {Po[r~ol) < T}I)< oo]}k- lPo[T~' )< oo] 

= { f_ l - -q}~ '~ )}{ f - -p (J~ l ) }k -~ f l ,  k>/ 1 (C26a) 
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and similarly 

q(1,k')_ { F _  pll.1)}k' F_l ,  k '  >/1 
l 

from which we deduce 

with 

(C26b) 

p}k,1) = / " l n ( l '  1) Yk'~" l 1 (C 27a) 

q}l,k') = q}"~)X~' 1 (C27b) 

pl,,,) = (1 - F) F tF  t (C28a) 
1 - F I F  t 

q11,1)= F - F t F  t F t (C28b) 
1 -- F tF_  t 

F -  FIF_I (C28c) 
XI " -  1 - F 1 F _  t 

From Eqs. (C25a, b) it follows that the two sums 

e , ( r / )  :=  

Qt(r/) :-- 

satisfy the set of equations 

k,k '>/  l 

k ,k '>~l  

r/k- lr/k'- l plk,k') (C29a) 

r/k- Ir/k' lqlk,k') (C29b) 

(1 - r/F)P, = 1 , -  (1 -- r/)F,Q t 

(1 - r/F) QI = J, - (1 - r/) F _ t P  t 

with 

(C30a) 

(C30b) 

co 
It(r/) := p}1'1'/(1 - qXt) + F, ~ r/k-lqlk,1) (C3 la) 

k - 1  

J,(r/) :=q}a'~)/(1 - - r / X t ) + F  t ~ r/k'-~pll'k') (C31b) 
k ~ 1 

where Eqs. (C27a, b) are used. The two sums in Eqs. (C31a, b) can be found 
from Eqs.(C25b) and (C25a), respectively, with Eqs.(C27a, b) and 
(C28a, b, c). This leads to 

I t = F tF_ t / ( l  -- r/F) (C32a) 

J t = r v  t/(1 -- r/F) (C32b) 
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Substituting this into Eqs. (C30a ,  b) we can solve Pl(r/) and Qt(q) ,  and from 
Eqs. (C21) ,  (C22) ,  and ( C 2 9 )  we  then get 

~ff_l~lk,_,blk,k, ) (1 -- r/)2(1 - 1 - - q  

_ , 

that  F(l; z) = [G(I; z) - ~o]/G(O; z) (~) and 

(1 -- qF) / (1  - r/)(1 - - F )  = G O + r//(1 - r/) we 
Using Eq.(C18a), noting 
writing G l :=G( l ;  1) and 
finally arrive at 

GiG_t{ [G O + r//(1 - ~/)] - G_t} 
O' ( z )=(1 - -  z)-2 A" [Go + ~ _ q)]Z{[Go + q/( 1 _ ~)]2 _ GiG i} 

G(l; z) 
• [~(0; z) + ~/(1 - ~)] (C34) 

Equations (C18) and (C34) are exact expressions from which the coef- 
ficients ~ in Eq. (C16) can be deduced. We are now ready to use Eq. (C15) 
and find the leading order behavior in n of en. At this point we have to 
distinguish between the two classes of random walks I and II introduced 
earlier. ClassII  is the easiest one. Because in this class 
~I~L G2(I; 1) G(-l; 1) < m we deduce from Eq. (C34) that 

O"(z)  ~- a(1 - z )  -2 ,  ~ ~ 1 (c35) 

with a given by Eq. (3.13b). Equation (C.35) implies that the coefficients of 
~"(z) have a leading order behavior in n that is an. With Eqs. (C14)-(C16) 
and (C18) this explains the term 2an in Eqs. (3.12b) and (3.16b). The first 
term in each of these equations is a sum of two contributions. One comes 
from the first term in Eq. (C18), the other from the term of order q2 in the 
expansion of (U,), which is 

• 2 ~ (1 -- rlk)Z(V~, k)) ~-- 1 (1 r/)2(1 -- F)(1 + r/F) 
k~>, (1 -- ~/F)(1 -- qZF) n 

by Eq. (3.2) and Darboux's theorem. The two contributions become 
transparent in their combination. 

Class I is harder. In this class ~ t ~ L G Z ( l ; 1 ) G ( - l ; 1 ) = m  and 
( 1 - z )  2 #"(z)-~ m as z-~ 1. Since for transient random walks with d~> 2 
G(I; 1 ) ~ 0 ,  [ / [~ m (Ref. 34, p. 281), we get from Eq. (C18) 

(Go+ 1 q~_.] -4 ( 1 - - z )  -2 ~'  GtG_gG(I;z), z ~  l 0'(~)-~ 2O"(z) ~_ 2 
\ l q / / r  

(C36) 
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For random walks with d = 3, /~ = 0 and m 2 < oo it is shown in Ref. 29 
(p. 379) that ~ l . o  GIG tG~ ~- (2~zC) -z logj ,  j ~  oo, where G~" is the sum of 
the first j coefficients in the power series in z of G(l;z). With Eqs. 
(C14)--(C16) and (C36) this explains Eq. (3.16a). 

It remains to show what we used earlier to prove Eqs. (C7a, b,c),  viz. 
that ~k) ~k') Cov(X, , X ,  ) for all k and k', and the two sums (~k~kVarl/2x(,k)) 2 
and ~2k,k,UkCtk, Cov(X~ k), X~ k')) for all 0 < q < 1 and 0 ~< t /< 1, are all of the 
same order in n and have the property that they grow faster than n in class I 
and proportional to n in class II. This may be done as follows. We have 
calculated the sum ~2k,k' r/k-1 r/k'-I Cov(X~ k), X~ k')) and found that it has the 
mentioned property for all 0 ~< r/< 1. Now with the analysis given above it is 
not hard to calculate also the sums Y~k zk-1 Var 1/2 X(~ k) =:p, (z) ,  0 ~ z < 1, 
and Zk,k,Z~-~Zkz'-~Cov(X~ g), X(,k'))=:p,(zl,z2), 0 ~ Z ~ , Z 2 < l .  This is 
straightforward but tedious and is left to the reader. One finds that p2n(z ) has 
the same asymptotic behavior in n for all z and so does p,(z 1,z2) for all 
z~, z 2. Writing Zkt, t k Var ~/2 X(~ ) = --Y~r~>l (1/r)[-q/(1 -- q)]r(1 -- r/r) p,(r/r) 

r CoV(Xn ,Xn ) = Y~r,r'>~l (1/rr')[--q/(1 -- q)]r+r'(1 --/I r) and Y~k,k' ~k) (k') 
(1- qr') p,(rlr, or') and carrying out the summation over r one can then 
show that the two sums over k and k'  have the required property, as 
asserted. (Note that by the Schwarz inequality (Y~k~kVarl/2x~k))2>~ 
~k,k'/'tk/~k' C~ k), X~k')) ') From the result for p,(z~, z2) one further easily 
deduces (cf. Ref. 37, p. 232) that also the individual Cov(X~k),X(, k')) have 
this property. The attentive reader will observe that we do not really need 
Eq. (C7a). Nevertheless this equation stands at the basis of Eqs. (C7b, c), 
which we have used in the calculation of Vat U~ and shall need in the next 
appendix. 

APPENDIX D 

The purpose of this appendix is to prove that 

((U n - ( U n ) )  4 ) = O ( V a r  2Un), for all 0 < q <  l an d 0 ~<~ /<  1 (D1) 

for random walks in the classes I and II introduced in Appendix C, subject 
to the condition 

~W (1)4) = O(Var 2 S.)  (D2) 

where W~ 1~ is defined in Eq. (C3b). In Ref. 32, Eq. (D2) is proved for both 
classes, with the exception of random walks with d =  1 or 2 and 
G"(0; 1 ) =  oo (see Ref. 32, p. 117). For the latter subclass a proof of 
Eq. (D2) is not known. 
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Let 

tn := Z ['tk((g~n k) - -  (S(nk)))4)1/4/Var ~/2 Sn 
k 

(D3) 

where ~/k and S(f ) are defined below Eqs. (Cla, b). We shall show that t, is 
bounded. By Minkowski's inequality we have ((x + y)4)1/4 ~< 
(x4)1/4 + (y4)1/4 for any pair of stochastic variables x, y and hence by 
Eq. (Cla)  ( ( U  n -- (Un})4} 1/4 ~ Z k / J k ( ( S  (k) -- ( s (k ) ) )4)  1/4, SO that 

( ( U  n - (Un}) 4} ~ t4n Var 2 S ,  

Since Var U, ~ Var S , ,  the boundedness of t, will imply Eq. (D1). 
We start from Eq. (C2) and write 

s ( k )  _ V Zil .  " 2 n + l  - -  ~ .ik;2n+l 
0 ~ i 1 <  �9 �9 ' < i k ~ 2 n  + 1 

~ Z i  I �9 ik.n 
0 < i 1 <  � 9  <ik<~n 

+ ~_. Zi~...ik;2.+ I + R ~  (k) - - R ]  (k) (D4) 
n +  1~<i1< �9 , �9 <ik~2n+ 1 

with 

k - 1  

R l ( k )  : =  ~ Z Zil '"i l i l+l . ' . i k ; 2 n + l  / (D4a) 
I = 1  O<~il<...<il<~n<il+l<.,.<ik<~2n+l 

R 2(g) := ~g ~ (Zil,.,ikln--lil.,,ik;2rt+l) (D4b) 
0~<i1< �9 . .<ik<~n 

Obviously, 0 ~ Y~n<q+~<... < i k ~ < 2 n + l  Zil...ilil+l...ik;2n+l ~ Wil. . . i l;n 
Zil...ik;, - Z i v .  'ik;2,+i ~< Wit .  "ik;,' and thus with Eq. (C3b) 

k - 1  

o <. R~. ~k> < ~ w~.') 
I = l  

0 ~< R 2~k) ~< W~k) 

and 0 4  

(D5a) 

(DSb) 

The two sums in Eq. (D4) are independent and have the same distribution as 
S(, k). Hence, subtracting averages, we get 

\ ~ 2 n +  1 - -  \ O 2 n +  ~ [2((S~k)--(S~k)))4)+6Var2S(,')] '/' 
k 

+ 2 Z (W~))4) 1/" (D6) 
1 = 1  
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where we use Eqs. (D5a, b) and repeatedly apply Minkowski 's inequality. In 
Ref. 32 it is shown that both in class I and in class II n -1 V a r S ,  is 
asymptotically a monotone,  nondecreasing and slowly varying function of  n. 
Thus Var $2,+1 ~_ 2 Var S ,  and it now follows from Eqs. (C6a), (D2), (D3), 
and (D6) that there is a constant M < ~ such that 

t 2 n + l < . 2 - 1 / s t , + M ,  for all n (D7) 

where we use that ~ k / l k V a r l / Z S ~ f f ) ~ V a r l / 2 S ,  (which was shown in 
Append ixC)  and that Y]kk /~k<m for all 0 < q <  1 and 0 ~ < r / <  1. [The 
number 2 -1/8 in Eq. (D7) may be replaced by any number >2-1 /4 ;  it is 
chosen < 1 to suit the proof.] 

We follow the line of  reasoning in Ref. 32 (p. 114). Now there is a 
7 < m so large that 2- i /8  + (M/7) ~< 1. Suppose that for some integer m we 
have t m >/7. Then it follows from Eq. (D7) that ( tz ,+Jtm)<~ 2 1/8(t , / tm)+ 

(M/y)  for n/> m. This implies that tzm+l ~ t m and it follows by induction 
that t ,  <~ t m for n in the subsequence of  integers of  the form n = 
2J(m + 1 ) -  1 = :  nj , j>~ O. Next, consider nj 1 < n < nj for somej .  Trivially, 

( (S(k)  --  (S (k ) ) )4 )  1/4 ~ [(( S(k) -  ( s ( k ) ) )  4) -~ ((s~k)n- 1 -- (S(k).j-n 1))4) 

+ 6 Var S~ k). Var S (k) _1] 1/4 hi-- n 

and through an argument similar to that given above we find that there are 
constants N1, N2 < m such that 

t n ~ N l t n i + N 2 ,  for all j (DS) 

This proves the boundedness of  t,  for all n, and hence Eq. (D1) subject to 
Eq. (D2), as asserted. 
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